If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5+x^2+6x=0
a = 1; b = 6; c = +5;
Δ = b2-4ac
Δ = 62-4·1·5
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4}{2*1}=\frac{-10}{2} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4}{2*1}=\frac{-2}{2} =-1 $
| 49x-2=15 | | 20d-18d=16 | | T=2i+22 | | 3/4x+91=6(-x-1)-11 | | 22/6+m=35 | | 7+w/10.24=11 | | -20x+2=10x-4 | | 3(x-2)=4(x-1)-6 | | 9.7+3.1y-1.9y=2.3 | | 13.2=11b | | (7x-5)+(3x+9)+x=180 | | 2M-6m=-1 | | 3a-6=23 | | 3y(y+6)=0 | | -(3x+7)=-6x+2 | | y-5/6=6+1/4 | | 2c2-6c-2=3c | | y-5/6=61/4 | | 10=p÷10 | | (5x^2+32)(7x^2)=180 | | 2(5t-25)+5t=-8 | | 80+95+38+x=160 | | 5(y-6)-7y=-10 | | (2x-1)(2x+3)=12–3x | | 12z2+7z-16=-6 | | 80+95+38+x=90 | | x/5=-12.5 | | 13x+8=151 | | 6y-6.1=13.1 | | k/3(-)-59=68 | | 0.14=x/10 | | 8x-7=7x-14 |